How do you solve 3y^2+5y-4=0 using the quadratic formula?

1 Answer
Apr 26, 2016

The solutions are y = (-5+sqrt(73))/6 , y = (-5-sqrt(73))/6

Explanation:

3y^2 + 5y - 4 = 0

The equation is of the form color(blue)(ay^2+by+c=0 where:

a=3, b=5, c= -4

The Discriminant is given by:

Delta=b^2-4*a*c

= (5)^2-(4* 3 * (-4))

= 25 + 48 = 73

The solutions are found using the formula
y=(-b+-sqrtDelta)/(2*a)

y = ((-5)+-sqrt(73))/(2*3) = (-5+-sqrt(73))/6

The solutions are:

  • color(green)(y = (-5+sqrt(73))/6

  • color(green)(y = (-5-sqrt(73))/6