How do you solve 3x+y=23x+y=2 and 2x+3y=132x+3y=13 using substitution?

1 Answer
Mar 4, 2016

"Point of intersection "(x,y)" "->" "(-1,5)Point of intersection (x,y) (1,5)

Explanation:

Given:
3x+y=23x+y=2............................(1)
2x+3y=132x+3y=13.......................(2)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider equation (1)

Subtract 3x3x form both sides

3x-3x+y=2-3x3x3x+y=23x

0+y=-3x+2" "..................(1_a)

Using equation 1_a substitute for y in equation (2)

2x+3(-3x+2)=13................(2_a)

2x-9x+6=13

-7x+6=13

Subtract 6 from both sides

-7x+6-6=13-6

-7x+0=7

Divide bot sides by -7

(-7)/(-7)xx x=(+7)/(-7)

(+1)xx x=-1

color(red)(x=-1)
'~~~~~~~~~~~~~~~~~~~~~~~~~
Substitute x=-1 into equation (1)

3x+y=2" "->" "3(-1)+y=2

-3+y=2

Add 3 to both sides

-3+3+y=2+3

color(red)(y=5)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To prove this:
write equation (1) as: y=-3x+2
write equation (2) as: y=-2/3 x+13/3
Tony B