Step 1) Solve the second equation for #x#:
#x + 2y = 2#
#x + 2y - 2y = 2 - 2y#
#x + 0 = 2 - 2y#
#x = 2 - 2y#
Step 2) Substitute #color(red)(2 - 2y)# for #x# in the first equation and solve for #y#:
#3(color(red)(2 - 2y)) + 4y = -4#
#6 - 6y + 4y = -4#
#6 - 2y = -4#
#6 - 6 - 2y = -4 - 6#
#0 - 2y = -10#
#-2y = -10#
#(-2y)/color(red)(-2) = (-10)/color(red)(-2)#
#(color(red)(cancel(color(black)(-2)))y)/cancel(color(red)(-2)) = 5#
#y = 5#
Step 3) Substitute #color(red)(5)# for #y# in the solution to the second equation at the end of Step 1 and calculate #x#:
#x = 2 - (2 xx color(red)(5))#
#x = 2 - 10#
#x = -8#
The solution is:
#x = -8# and #y = 5# or (-8, 5)