How do you solve 3x^2 - 2x = 4 using the quadratic formula?

1 Answer
Feb 27, 2016

The solutions are :
color(blue)(x=(1+sqrt13)/3

color(blue)(x=(1-sqrt13)/3

Explanation:

3x^2-2x-4=0

The equation is of the form color(blue)(ax^2+bx+c=0 where:
a=3, b=-2, c=-4

The Discriminant is given by:
Delta=b^2-4*a*c

= (-2)^2-(4*3*-4)

= 4 +48 = 52

The solutions are found using the formula
x=(-b+-sqrtDelta)/(2*a)

x = (-(-2)+-sqrt(52))/(2*3) = (2+-sqrt(52))/6

Upon further simplification sqrt52= sqrt(2*2*13)= 2sqrt13

So, x = (2+-2sqrt(13))/6 = (cancel2(1+-sqrt13))/cancel6
= (1+-sqrt13)/3

The solutions are :
color(blue)(x=(1+sqrt13)/3
color(blue)(x=(1-sqrt13)/3