How do you solve 3x^2+2=4x3x2+2=4x using the quadratic formula?

1 Answer
Feb 8, 2017

The solutions are S={2/3+1/3sqrt2i,2/3-1/3sqrt2i}S={23+132i,23132i}

Explanation:

We compare this equation to

ax^2+bx+c=0ax2+bx+c=0

3x^2+2=4x3x2+2=4x

3x^2-4x+2=03x24x+2=0

We calculate the discriminant

Delta=b^2-4ac

Delta=(-4)^2-4(3)(2)=16-24=-8

As, Delta<0, the solutions are not in RR but in CC

x=(-b+-sqrtDelta)/(2a)

x=(4+-sqrt(-8))/6

x_1=(4+2sqrt2i)/6=2/3+1/3sqrt2i

x_2=(4-2sqrt2i)/6=2/3-1/3sqrt2i