Pose:
sinx = usinx=u
cos x = vcosx=v
You have:
3u+5v=43u+5v=4
and from the fundamental trigonometric identity:
u^2+v^2=1u2+v2=1
Substitute vv from the first equation into the second:
v=(4-3u)/5v=4−3u5
u^2+((4-3u)/5)^2=1u2+(4−3u5)2=1
25u^2+16-24u+9u^2-25=025u2+16−24u+9u2−25=0
34u^2-24u-9=034u2−24u−9=0
Using the quadratic formula:
u=frac (12+-sqrt(144+9*34)) 34=frac (12+-3sqrt(50)) 34u=12±√144+9⋅3434=12±3√5034
u_1=0.97685u1=0.97685
u_2=-0.27097u2=−0.27097
v_1=0.21389v1=0.21389
v_2=0.96258v2=0.96258
Both solutions are between -1−1 and 11 as the value of a sine or a cosine must be and can be accepted.
The corresponding angles are:
theta_1=-0.274407416θ1=−0.274407416
theta_2=1.355246417θ2=1.355246417