How do you solve 3sinx+5cosx=43sinx+5cosx=4?

2 Answers
Nov 30, 2016

Pose:

sinx = usinx=u
cos x = vcosx=v

You have:

3u+5v=43u+5v=4

and from the fundamental trigonometric identity:

u^2+v^2=1u2+v2=1

Substitute vv from the first equation into the second:

v=(4-3u)/5v=43u5

u^2+((4-3u)/5)^2=1u2+(43u5)2=1

25u^2+16-24u+9u^2-25=025u2+1624u+9u225=0

34u^2-24u-9=034u224u9=0

Using the quadratic formula:

u=frac (12+-sqrt(144+9*34)) 34=frac (12+-3sqrt(50)) 34u=12±144+93434=12±35034

u_1=0.97685u1=0.97685
u_2=-0.27097u2=0.27097

v_1=0.21389v1=0.21389
v_2=0.96258v2=0.96258

Both solutions are between -11 and 11 as the value of a sine or a cosine must be and can be accepted.

The corresponding angles are:

theta_1=-0.274407416θ1=0.274407416
theta_2=1.355246417θ2=1.355246417

Nov 30, 2016

x=arcsin(4/sqrt(3^2+5^2))-arctan(5/3)x=arcsin(432+52)arctan(53)

Explanation:

Making

3=lambda cos(phi_0)3=λcos(ϕ0)

and

5=lambda sin(phi_0)5=λsin(ϕ0)

with lambda = sqrt(3^2+5^2)λ=32+52

we have

lambda sin(x) cos(phi_0)+lambda cos(x)sin(phi_0)=4λsin(x)cos(ϕ0)+λcos(x)sin(ϕ0)=4

Now using the identity

sin(a+b)=sin(a)cos(b)+sin(b)cos(a)sin(a+b)=sin(a)cos(b)+sin(b)cos(a) we have

sin(x+phi_0)=4/lambda=4/sqrt(3^2+5^2)sin(x+ϕ0)=4λ=432+52

so x+phi_0=arcsin(4/sqrt(3^2+5^2))x+ϕ0=arcsin(432+52)

but phi_0 = arctan(5/3)ϕ0=arctan(53) then

x=arcsin(4/sqrt(3^2+5^2))-arctan(5/3)x=arcsin(432+52)arctan(53)