How do you solve 3sinx+2=tan753sinx+2=tan75?

1 Answer
Jul 9, 2016

:.x=npi+(-1)^nalpha
where sin^-1(1/sqrt3)=alpha

Explanation:

3sinx+2=tan75=(tan30+tan45)/(1-tan30tan45)

=>3sinx+2=(1/sqrt3+1)/(1-1/sqrt3xx1)

=>3sinx+2=(sqrt3+1)/(sqrt3-1)

=>3sinx+2=(sqrt3+1)^2/((sqrt3-1)(sqrt3+1)

=>3sinx+2=(4+2sqrt3)/(3-1)

=>3sinx+2=2+sqrt3

=>3sinx=sqrt3

=>sinx=sqrt3/3=1/sqrt3==sinalpha

where sin^-1(1/sqrt3)=alpha

:.x=npi+(-1)^nalpha

"where "n=+-1,+-2,+-3....