How do you solve 3sin^2x=3sinx+2 in the interval [0,360]?

1 Answer
Jan 26, 2017

The solutions are S={332.8º, 207.2 º}

Explanation:

Let's rewrite the equation

3sin^2x-3sinx-2=0

We solve this like a quadratic equation

ax^2+bx+c=0

We start by calculating the discriminant

Delta=b^2-4ac=(-3)^2-4*3*(-2)=9+24=33

Delta >0, we have 2 real solutions

x=(-b+-sqrtDelta)/(2a)

sinx=(3+-sqrt33)/(6)

sinx=1.46, there is no solution as -1<=sinx<=1

sinx=-0.457, x=332.8º and 207.2º