How do you solve -3cosx+3=2sin^2x3cosx+3=2sin2x in the interval 0<=x<=2pi0x2π?

1 Answer
Nov 7, 2016

x={(2pi)/3,pi,(4pi)/3}x={2π3,π,4π3}

Explanation:

3cosx+3=2sin^2x3cosx+3=2sin2x

hArr3cosx+3=2(1-cos^2x)3cosx+3=2(1cos2x)

or 3cosx+3=2-2cos^2x3cosx+3=22cos2x

or 2cos^2x+3cosx+1-02cos2x+3cosx+10

or 2cos^2x+2cosx+cosx+1-02cos2x+2cosx+cosx+10

or 2cosx(cosx+1)+1(cosx+1)=02cosx(cosx+1)+1(cosx+1)=0

or (2cosx+1)(cosx+1)=0(2cosx+1)(cosx+1)=0

and hence either 2cosx+1=02cosx+1=0 i.e. cosx=-1/2cosx=12

or cosx+1=0cosx+1=0 i.e. cosx=-1cosx=1

Considering 0<= x <= 2pi0x2π,

x=(2pi)/3x=2π3 or x=(4pi)/3x=4π3 or x=pix=π

i.e. x={(2pi)/3,pi,(4pi)/3}x={2π3,π,4π3}