3cos2theta=2-sintheta3cos2θ=2−sinθ can be simplified as
3(1-2sin^2theta)=2-sintheta3(1−2sin2θ)=2−sinθ or
3-6sin^2theta=2-sintheta3−6sin2θ=2−sinθ
6sin^2theta-sintheta-1=06sin2θ−sinθ−1=0
Hence sintheta=(1+-sqrt(1^2-4xx6xx(-1)))/(2xx6)sinθ=1±√12−4×6×(−1)2×6
= (1+-sqrt(1+24))/12=(1+-5)/121±√1+2412=1±512
Hence either sintheta=1/2sinθ=12 i.e. theta=pi/6=30^oθ=π6=30o or (5pi)/6=150^o5π6=150o
or sintheta=-1/3sinθ=−13
now as sin19.47^o=1/3sin19.47o=13,
theta=180^o+19.47^o=199.47^oθ=180⊕19.47o=199.47o or theta=360^o-19.47^o=340.53^oθ=360o−19.47o=340.53o