How do you solve 3cos2theta=2-sintheta3cos2θ=2sinθ in the interval 0<=x<=2pi0x2π?

1 Answer
Jul 25, 2016

theta=30^o,150^o,199.47^oθ=30o,150o,199.47o or 340.53^o340.53o

Explanation:

3cos2theta=2-sintheta3cos2θ=2sinθ can be simplified as

3(1-2sin^2theta)=2-sintheta3(12sin2θ)=2sinθ or

3-6sin^2theta=2-sintheta36sin2θ=2sinθ

6sin^2theta-sintheta-1=06sin2θsinθ1=0

Hence sintheta=(1+-sqrt(1^2-4xx6xx(-1)))/(2xx6)sinθ=1±124×6×(1)2×6

= (1+-sqrt(1+24))/12=(1+-5)/121±1+2412=1±512

Hence either sintheta=1/2sinθ=12 i.e. theta=pi/6=30^oθ=π6=30o or (5pi)/6=150^o5π6=150o

or sintheta=-1/3sinθ=13

now as sin19.47^o=1/3sin19.47o=13,

theta=180^o+19.47^o=199.47^oθ=18019.47o=199.47o or theta=360^o-19.47^o=340.53^oθ=360o19.47o=340.53o