How do you solve 36^(x^2+9) = 216^(x^2+9)36x2+9=216x2+9?
1 Answer
May 22, 2017
for any integer
Explanation:
Given:
36^(x^2+9) = 216^(x^2+9)36x2+9=216x2+9
Divide both sides by
1 = 6^(x^2+9) = e^((x^2+9)ln 6)1=6x2+9=e(x2+9)ln6
From Euler's identity we can deduce:
(x^2+9)ln 6 = 2kpii(x2+9)ln6=2kπi
for any integer
So:
x^2+9 = (2kpii)/ln 6x2+9=2kπiln6
Hence:
x = +-sqrt((2kpii)/ln 6-9)x=±√2kπiln6−9
If
x = +-sqrt(-9) = +-3ix=±√−9=±3i
Footnote
If you would like the other roots in
+-((sqrt((sqrt(a^2+b^2)+a)/2)) + (b/abs(b) sqrt((sqrt(a^2+b^2)-a)/2))i)±⎛⎝⎛⎝√√a2+b2+a2⎞⎠+⎛⎝b|b|√√a2+b2−a2⎞⎠i⎞⎠