How do you solve #36^(x^2+9) = 216^(x^2+9)#?
1 Answer
May 22, 2017
for any integer
Explanation:
Given:
#36^(x^2+9) = 216^(x^2+9)#
Divide both sides by
#1 = 6^(x^2+9) = e^((x^2+9)ln 6)#
From Euler's identity we can deduce:
#(x^2+9)ln 6 = 2kpii#
for any integer
So:
#x^2+9 = (2kpii)/ln 6#
Hence:
#x = +-sqrt((2kpii)/ln 6-9)#
If
#x = +-sqrt(-9) = +-3i#
Footnote
If you would like the other roots in
#+-((sqrt((sqrt(a^2+b^2)+a)/2)) + (b/abs(b) sqrt((sqrt(a^2+b^2)-a)/2))i)#