How do you solve 3- 3 Cos (theta) = 2 Sin^2 (theta)33cos(θ)=2sin2(θ)?

1 Answer
Apr 13, 2016

In [0, 2pi], theta = 0, pi/3, 5pi/3 and 2pi[0,2π],θ=0,π3,5π3and2π.
General solution: theta=2kpi and theta= 2kpi+-pi/3θ=2kπandθ=2kπ±π3, k=1,2,3,....

Explanation:

Using sin^2theta=1-cos^2theta and c=costhetasin2θ=1cos2θandc=cosθ,,
3-3c=2(1-c^2)33c=2(1c2)
2c^2-3c+1=02c23c+1=0
c=cos theta=1, 1/2c=cosθ=1,12..

In [0, 2pi]: arc cos 1=0 and 2pi[0,2π]:arccos1=0and2π.
arc cos(1/2)=pi/3 and (5pi)/3arccos(12)=π3and5π3,
using cos(2pi+-theta)=costhetacos(2π±θ)=cosθ

General solution is given by cos(2kpi+-theta)=costhetacos(2kπ±θ)=cosθ, k=1,2,3....