How do you solve 3(1-sinx)=2cos^2x in the interval 0<=x<=2pi?

1 Answer
Nov 9, 2016

3 - 3sinx = 2cos^2x

Apply the identity sin^2theta + cos^2theta = 1- > cos^2theta = 1 - sin^2theta.

3 - 3sinx = 2(1 - sin^2x)

3 - 3sinx = 2 - 2sin^2x

2sin^2x - 3sinx + 1 = 0

2sin^2x - 2sinx - sinx + 1 = 0

2sinx(sinx - 1) - (sinx - 1) = 0

(2sinx - 1)(sinx - 1) = 0

sinx = 1/2 and sinx = 1

x = pi/6, (5pi)/6, pi/2

Hopefully this helps!