Taking it 1 step at a time so that you can see better what is going on
Using first principles (short cut method taken from this approach)
#color(purple)("Step 1")#
Add #color(red)(5x)# to both sides
#color(blue)(2y^2-5x-12=0" "->" "2y^2color(red)(+5x)-5x-12=0color(red)(+5x))#
#" "2y^2" "+0" "-12=5x#
#" "2y^2-12=5x#
...................................................................................................
#color(purple)("Step 2")#
Add #color(red)(12)# to both sides
#color(blue)(2y^2-12=5x" "->" "2y^2color(red)(+12)-12=5xcolor(red)(+12) )#
#" "2y^2" "+0" "=5x+12#
#" "2y^2=5x+12#
...................................................................................................
#color(purple)("Step 3")#
Divide both sides by 2 (same as #color(red)(xx1/2)#)
#color(blue)(2y^2=5x+12" "->" "2/(color(red)(2))y^2=5/(color(red)(2))x+12/(color(red)(2)) #
But #2/2=1# giving:#" "y^2=5/2x+6#
...................................................................................................
#color(purple)("Step 4")#
Square root both sides:#" "sqrt(y^2)=sqrt(5/2x+6)#
#" "y=+-sqrt(5/2x+6)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(purple)(ul("Foot note"))#
Using an example #(-2)xx(-2)=+4#
#" "(+2)xx(+2) = +4#
As both #(-2)xx(-2)" and "(+2)xx(+2)# both equal 4 then
#sqrt(4) = "plus or minus "2 -> +-2#
Which is why we end up with #y=+-sqrt(5/2x+6)#