How do you solve 2x + 7y = - 8 and - 2x + 3y = - 12 using matrices?

1 Answer
Jun 23, 2017

(x,y)=(3,-2)
(see below for use of matrices)

Explanation:

Define the matrices:
M_(xyc)=({: (x,y,=c), (2,7,-8), (-2,3,-12) :})

M_(xy)=({:(2,7),(-2,3):})color(white)("XX")M_(cy)=({:(-8,7),(-12,3):})color(white)("XX")M_(xc)=({:(2,-8),(-2,-12):})

and their determinants:
D_(xy)=|{:(2,7),(-2,3):}|=2xx3-(-2)xx7=20

D_(cy)=|{:(-8,7),(-12,3):}|=(-8)xx3-(-12)xx7=60

D_(xc)=|{:(2,-8),(-2,-12):}|=2xx(-12)-(-2)xx(-8)=-40

By Cramer's Rule
color(white)("XXX")x=(D_(cy))/(D_(xy))=60/20=3
and
color(white)("XXX")y=(D_(xc))/(C_(xy))=(-40)/20=-2