Step 1) Solve the second equation for #y#:
#-6x + 6y = 18#
#(-6x + 6y)/color(red)(6) = 18/color(red)(6)#
#(-6x)/color(red)(6) + (6y)/color(red)(6) = 3#
#-x + y = 3#
#-x + color(red)(x) + y = 3 + color(red)(x)#
#0 + y = 3 + x#
#y = 3 + x#
Step 2) Substitute #(3 + x)# for #y# in the first equation and solve for #x#:
#-2x + 3y = 15# becomes:
#-2x + 3(3 + x) = 15#
#-2x + (3 xx 3) + (3 xx x) = 15#
#-2x + 9 + 3x = 15#
#-2x + 9 - color(red)(9) + 3x = 15 - color(red)(9)#
#-2x + 0 + 3x = 6#
#-2x + 3x = 6#
#(-2 + 3)x = 6#
#1x = 6#
#x = 6#
Step 3) Substitute #6# for #x# in the solution to the second equation at the end of Step 1 and calculate #y#:
#y = 3 + x# becomes:
#y = 3 + 6#
#y = 9#
The Solution Is:
#x = 6# and #y = 9#
Or
#(6, 9)#