How do you solve 2x^2+6x+4=0 using the quadratic formula?

1 Answer
Aug 10, 2015

The solutions for the equation are:
color(blue)(x=-1 , x=-2

Explanation:

2x^2+6x+4=0

The equation is of the form color(blue)(ax^2+bx+c=0 where:
a=2, b=6, c=4

The Discriminant is given by:
Delta=b^2-4*a*c

= (6)^2-(4*(2)*4)

= 36 -32 = 4

The solutions are found using the formula
x=(-b+-sqrtDelta)/(2*a)

x = ((-6)+-sqrt(4))/(2*2) = ((-6+-2))/4

x = ((-6+2))/4 = -4/4 = -1

x = ((-6-2))/4 = -8/4 = -2

color(blue)(x=-1 , x=-2