How do you solve 2x^2 - 4x - 5=0 using the quadratic formula?
1 Answer
Explanation:
2x^2-4x-5 = 0
is of the form:
ax^2+bx+c = 0
with
This has roots given by the quadratic formula:
x = (-b+-sqrt(b^2-4ac))/(2a)
color(white)(x) = (4+-sqrt((-4)^2-4(2)(-5)))/(2(2))
color(white)(x) = (4+-sqrt(16+40))/4
color(white)(x) = (4+-sqrt(56))/4
color(white)(x) = (4+-sqrt(2^2*14))/4
color(white)(x) = (4+-2sqrt(14))/4
color(white)(x) = 1+-sqrt(14)/2
Footnote
The quadratic formula is very useful, but is it just a "magical" formula to you, or do you know how to derive it?
Here's one way:
Given:
ax^2+bx+c = 0
We find:
0 = 1/a(ax^2+bx+c)
color(white)(0) = x^2+b/ax+c/a
color(white)(0) = x^2+2b/(2a)x+b^2/(2a)^2-b^2/(2a)^2+c/a
color(white)(0) = (x+b/(2a))^2-(b^2-4ac)/(4a^2)
Add
(x+b/(2a))^2 = (b^2-4ac)/(4a^2)
Take the square root of both sides, allowing for both positive and negative square roots to find:
x+b/(2a) = +-sqrt((b^2-4ac)/(4a^2))= +-sqrt(b^2-4ac)/(2a)
Subtract
x = -b/(2a)+-sqrt(b^2-4ac)/(2a) = (-b+-sqrt(b^2-4ac))/(2a)