How do you solve #2x^2+4x-5=0#?
1 Answer
Use the quadratic formula to find:
#x = -1+-sqrt(14)/2#
Explanation:
This has discriminant
#Delta = b^2-4ac = 4^2-(4*2*(-5)) = 16+40 = 56 = 2^2*14#
This is positive, but not a perfect square. So our quadratic equation has Real irrational roots.
We can find the roots using the quadratic formula:
#x = (-b+-sqrt(b^2-4ac))/(2a)#
#=(-b+-sqrt(Delta))/(2a)#
#=(-4+-sqrt(56))/(2*2)#
#=(-4+-2sqrt(14))/4#
#=-1+-sqrt(14)/2#
Alternative Method
Multiply through by
#a^2-b^2 = (a-b)(a+b)#
with
#0 = 4x^2+8x-10#
#=(2x+2)^2-4-10#
#=(2x+2)^2-(sqrt(14))^2#
#=((2x+2)-sqrt(14))((2x+2)+sqrt(14))#
#=(2x+2-sqrt(14))(2x+2+sqrt(14))#
#=(2(x+1-sqrt(14)/2))(2(x+1+sqrt(14)/2))#
#=4(x+1-sqrt(14)/2)(x+1+sqrt(14)/2)#
Hence