How do you solve 2x^2-3y^2+4=0 and xy=24?

1 Answer
Jul 19, 2016

{x = pm sqrt[sqrt[865]-1], y =pm sqrt( 2/3 (1 + sqrt[865]))}

Explanation:

Calling x_2=x^2 and y_2=y^2 we have
the equivalent system

{(2 x_2-3y_2+4=0), (x_2 y_2 = 24^2) :}

Solving for x_2,y_2 we obtain the only feasible solution

{x2 = sqrt[865]-1, y2 = 2/3 (1 + sqrt[865])}

then

{x = pm sqrt[sqrt[865]-1], y =pm sqrt( 2/3 (1 + sqrt[865]))}