How do you solve 2x^2 - 3x + 4 = 0 using the quadratic formula?
3 Answers
Explanation:
if
or
Explanation:
Given:
2x^2-3x+4 = 0
Note that this is of the form:
ax^2+bx+c = 0
with
The discriminant
Delta = b^2-4ac = (-3)^2-4(2)(4) = 9-32 = -23
Since
We can still use the quadratic formula to find them:
x = (-b+-sqrt(b^2-4ac))/(2a)
color(white)(x) = (-b+-sqrt(Delta))/(2a)
color(white)(x) = (3+-sqrt(-23))/4
color(white)(x) = (3+-sqrt(23)i)/4
color(white)(x) = 3/4+-sqrt(23)/4i
The solutions to
x = (-b +- sqrt(b^2-4ac))/(2a) .
In this case, we get
= (3 +- sqrt(9-32))/4
= (3 +- sqrt (-23))/4
The solutions are imaginary