How do you solve 2x^2 - 12x + 7 = 52x212x+7=5?

2 Answers
Mar 28, 2018

x = 3+-2sqrt(2)x=3±22

Explanation:

Given:

2x^2-12x+7=52x212x+7=5

Subtract 55 from both sides to get:

2x^2-12x+2=02x212x+2=0

Divide both sides by 22 to get:

0 = x^2-6x+10=x26x+1

color(white)(0) = x^2-6x+9-80=x26x+98

color(white)(0) = (x-3)^2-(2sqrt(2))^20=(x3)2(22)2

color(white)(0) = ((x-3)-2sqrt(2))((x-3)+2sqrt(2))0=((x3)22)((x3)+22)

color(white)(0) = (x-3-2sqrt(2))(x-3+2sqrt(2))0=(x322)(x3+22)

Hence:

x = 3+-2sqrt(2)x=3±22

Mar 29, 2018

x = 3 +- 2sqrt2x=3±22

Explanation:

2x^2 - 12x + 2 = 0
x^2 - 6x + 1 = 0
Use the improved quadratic formula (Socratic search):
D = d^2 = b^2 - 4ac = 36 - 4 = 32 = 2(16)D=d2=b24ac=364=32=2(16)
d = +- 4sqrt2d=±42
There are 2 real roots:
x = -b/(2a) +- d/(2a) = - (-6/2) +- (4sqrt2)/2x=b2a±d2a=(62)±422
x = (3 +- 2sqrt2)x=(3±22)