How do you solve 2x^2 - 12x + 7 = 52x2−12x+7=5?
2 Answers
Mar 28, 2018
Explanation:
Given:
2x^2-12x+7=52x2−12x+7=5
Subtract
2x^2-12x+2=02x2−12x+2=0
Divide both sides by
0 = x^2-6x+10=x2−6x+1
color(white)(0) = x^2-6x+9-80=x2−6x+9−8
color(white)(0) = (x-3)^2-(2sqrt(2))^20=(x−3)2−(2√2)2
color(white)(0) = ((x-3)-2sqrt(2))((x-3)+2sqrt(2))0=((x−3)−2√2)((x−3)+2√2)
color(white)(0) = (x-3-2sqrt(2))(x-3+2sqrt(2))0=(x−3−2√2)(x−3+2√2)
Hence:
x = 3+-2sqrt(2)x=3±2√2
Mar 29, 2018
Explanation:
2x^2 - 12x + 2 = 0
x^2 - 6x + 1 = 0
Use the improved quadratic formula (Socratic search):
There are 2 real roots: