How do you solve {(2Tan(x-pi/12)) / (1-Tan^2(x-pi/12))}^2=3 from [-pi/2, pi/2]?

1 Answer
Oct 7, 2016

x = -pi/4, -pi/12 and 5/12pi.

Explanation:

Use #tan (2a) = (2 tan a )/(1-tan^2a).

Here, tan^2 (2x-pi/6) = 3. So,

tan(2x-pi/6)=+-sqrt3

For the principal value of (2x-pi/6) in (-pi/2, pi/2),

2x-pi/6=+-pi/3 that gives

x = 5/12pi and x = -pi/4.

The general value is given by.,

.2x-pi/6=kpi+(+-pi/3), k=0.+-1.+-2,+-3,... that gives

x = k/2pi+(pi/12+-pi/3), k=0.+-1.+-2,+-3,...

k = -1 throws -pi/12 into (-pi/2, pi/2)

So, the answer is x = -pi/12, -pi/4 and 5/12pi.