How do you solve 2t^2 – 6t + 1 = 0 using the quadratic formula?

1 Answer
Oct 14, 2015

The solutions are:
color(blue)(t=((3+sqrt(7)))/2

color(blue)(t=((3-sqrt(7)))/2

Explanation:

2t^2-6t+1

The equation is of the form color(blue)(at^2+bt+c=0 where:
a=2, b=-6, c=1

The Discriminant is given by:

Delta=b^2-4*a*c
= (-6)^2-(4*2*1)
= 36- 8=28

The solutions are found using the formula
t=(-b+-sqrtDelta)/(2*a)

t = (-(-6)+-sqrt(28))/(2*2) = (6+-2sqrt(7))/4

(6+-2sqrt(7))/4 = (2(3+-sqrt(7)))/4

=(cancel2(3+-sqrt(7)))/cancel4

=((3+-sqrt(7)))/2

The solutions are
color(blue)(t=((3+sqrt(7)))/2

color(blue)(t=((3-sqrt(7)))/2