How do you solve 2sinx+cscx=3?

1 Answer
Dec 11, 2016

The solutions are S={pi/2+2kpi,pi/6+2kpi,(5pi)/6+2kpi}, kinZZ

Explanation:

cscx=1/sinx

We rewrite the equation

2sinx+1/sinx=3

2sin^2x+1=3sinx

2sin^2x-3sin+1=0

This is a quadratic equation in sinx

ax^2+bx+c=0

We calculate the discriminant

Delta=b^2-4ac=9-4*2*1=1

As, Delta>0, we have 2 real roots

The roots are

(-b+-sqrtDelta)/(2a)

so,
sinx=(3+-1)/4

sinx=1, =>, x=pi/2+2kpi, (k in ZZ)

sinx=1/2, =>, x=pi/6+2kpi and x=(5pi)/6+2kpi
k in ZZ