How do you solve (2sinx-1)(2cos^2x-1)=0?

1 Answer
Jun 25, 2018

The solutions are S={pi/6+2kpi, 5/6pi+2kpi, pi/4+kpi/2}, AA k in ZZ

Explanation:

The equation is

(2sinx-1)(2cos2x-1)=0

=>, {(2sinx-1=0),(2cos^2x-1=0):}

=>, {(sinx=1/2),(cosx=+-sqrt(1/2)):}

=>, x=pi/6+2kpi " and " 5/6pi+2kpi

and x=pi/4+kpi/2

AA k in ZZ

The solutions are

S={pi/6+2kpi, 5/6pi+2kpi, pi/4+kpi/2}