How do you solve 2sin^2x=sinx?

1 Answer
Jun 16, 2016

x = {2kpi }uu {pi+2kpi }uu {pi/6+2kpi }uu {(5pi)/6+2kpi }
for {k=0,pm1,pm2,...}

Explanation:

2sin^2(x)=sin(x) -> sin (x)(2 sin (x)-1)=0

so the conditions are

{(sin(x) = 0), (2sin(x)-1=0) :}

The solutions are

x = {pi+2kpi }uu {2kpi } for {k=0,pm1,pm2,...}

and

x = {pi/6+2kpi }uu {(5pi)/6+2kpi } for {k=0,pm1,pm2,...}

Finally

x = {2kpi }uu {pi+2kpi }uu {pi/6+2kpi }uu {(5pi)/6+2kpi }

for {k=0,pm1,pm2,...}