How do you solve 2sin^2x = 2 + cosx in the interval 0 to 2pi?

1 Answer
Mar 28, 2016

First, perform a Pythagorean substitution to remove the sine term from the left side: 2(1-cos^2(x))=2 + cos(x) .

Explanation:

Simplify the left side : 2-2cos^2(x)=2+cos(x)
Gather like terms and set equal to 0: 0=2cos^2(x)+cos(x)
Factor the right side: 0=cos(x)(2cos(x) + 1)
Use the Zero Product Property:
cos(x) = 0 or 2cos(x)+1=0
cos(x)=0 or 2cos(x) = -1
cos(x)=0 or cos(x) = -1/2
So, x = cos^-1(0) or x = cos^-1(-1/2)
x = pi/2 , (3*pi)/2, or (2*pi)/3, (4*pi)/3