How do you solve 2sin^2(x)+3cos(x)=0 on the interval [0,2pi]?

1 Answer
Mar 20, 2016

(2pi)/3, (4pi/3)

Explanation:

Replace in the equation sin^2 x by (1 - cos^2 x) -->
2(1 - cos^2 x) + 3cos x = 0
-2cos^2 x + 3cos x + 2 = 0
Solve this equation for cos x.
D = d^2 = b^2 - 4ac = 9 + 16 = 25 --> d = +- 5
cos x = -b/(2a) +- d/(2a) = 3/4 +- 5/-4 = 3/4 +- 5/4
a. cos x = 8/4 = 2 (rejected because > 1)
b. cos x = -2/4 = -1/2
cos x = -1/2 --> x = +- (2pi)/3
Answers for the interval (0, 2pi):
(2pi)/3, (4pi)/3 (co-terminal to (-2pi)/3)