How do you solve 2cosx+2sinx=sqrt2?

1 Answer
Oct 27, 2016

As below

Explanation:

2cosx+2sinx=sqrt2

Dividing both sides by 2sqrt2

=>2/(2sqrt2)cosx+2/(2sqrt2)sinx=(sqrt2)/(2sqrt2)

=>1/sqrt2cosx+1/sqrt2sinx=1/2

=>cosxcos(pi/4)+sinxsin(pi/4)=1/2

=>cos(x-pi/4)=cos(pi/3)

=>x-pi/4=2npi+-pi/3," where "n in ZZ

So x=2npi+pi/3+pi/4=2npi+(7pi)/12

Or
x=2npi-pi/3+pi/4=2npi-pi/12