rarr2cos2x-3sinx-1=0
rarr2(1-2sin^2x)-3sinx-1=0
rarr2-4sin^2x-3sinx-1=0
rarr4sin^2x+3sinx-1=0
rarr(2sinx)^2+2*(2sinx)*(3/4)+(3/4)^2-(3/4)^2-1=0
rarr(2sinx+3/4)^2=1+9/16=25/16
rarr2sinx+3/4=+-sqrt(25/16)=+-(5)/4
rarr2sinx=+-5/4-3/4=(+-5-3)/4
rarrsinx=(+-5-3)/8
Taking +ve sign, we get
rarrsinx=(5-3)/8=1/4
rarrx=npi+(-1)^n*sin^(-1)(1/4) nrarrZ
Taking -ve sign, we get
rarrsinx=(-5-3)/8=-1
rarrx=npi+(-1)^n*(-pi/2) where nrarrZ