How do you solve 2cos^2x-cosx-1=0 and find all solutions in the interval [0,2pi)?

1 Answer
Jan 15, 2017

Solution is {0,(2pi)/3,(4pi)/3}

Explanation:

2cos^2x-cosx-1=0 can be written as

2cos^2x-2cosx+cosx-1=0

or 2cosx(cosx-1)+1(cosx-1)=0

or (2cosx+1)(cosx-1)=0

:. either 2cosx+1=0 i.e. cosx=-1/2 and in the interval [0,2pi) x=(2pi)/3 or (4pi)/3

or cosx-1= i.e. cosx=1 and in given interval x=0.

Hence solution is {0,(2pi)/3,(4pi)/3}