Using sin^2(x)+cos^2(x) = 1sin2(x)+cos2(x)=1, we can express the equation as:
3 = 2cos^2(x)+4sin^2(x) = 2(1-sin^2(x))+4sin^2(x)3=2cos2(x)+4sin2(x)=2(1−sin2(x))+4sin2(x)
=2-2sin^2(x)+4sin^2(x)=2−2sin2(x)+4sin2(x)
=2+2sin^2(x)=2+2sin2(x)
Subtract 2 from both ends to get:
2sin^2(x)=12sin2(x)=1
Divide both sides by 2 to get:
sin^2(x)=1/2sin2(x)=12
Again, since sin^2(x)+cos^2(x) = 1sin2(x)+cos2(x)=1, we also have:
cos^2(x)=1-sin^2(x)=1-1/2=1/2cos2(x)=1−sin2(x)=1−12=12
Hence sin(x)=+-sqrt(2)/2sin(x)=±√22 and cos(x)=+-sqrt(2)/2cos(x)=±√22
This is true for x = pi/4+(n pi)/2x=π4+nπ2 for all integer values of nn.