How do you solve 2cos^2(x)+ 4sin^2(x)=32cos2(x)+4sin2(x)=3?

1 Answer
May 11, 2015

Using sin^2(x)+cos^2(x) = 1sin2(x)+cos2(x)=1, we can express the equation as:

3 = 2cos^2(x)+4sin^2(x) = 2(1-sin^2(x))+4sin^2(x)3=2cos2(x)+4sin2(x)=2(1sin2(x))+4sin2(x)

=2-2sin^2(x)+4sin^2(x)=22sin2(x)+4sin2(x)

=2+2sin^2(x)=2+2sin2(x)

Subtract 2 from both ends to get:

2sin^2(x)=12sin2(x)=1

Divide both sides by 2 to get:

sin^2(x)=1/2sin2(x)=12

Again, since sin^2(x)+cos^2(x) = 1sin2(x)+cos2(x)=1, we also have:

cos^2(x)=1-sin^2(x)=1-1/2=1/2cos2(x)=1sin2(x)=112=12

Hence sin(x)=+-sqrt(2)/2sin(x)=±22 and cos(x)=+-sqrt(2)/2cos(x)=±22

This is true for x = pi/4+(n pi)/2x=π4+nπ2 for all integer values of nn.