How do you solve 2cos^2(2x)+cos(2x)-1=0 ?

1 Answer
Mar 17, 2016

x = pi/6 + kpi or pi/3 + kpi or pi/2 + kpi,

for any integer k.

Explanation:

Let cos(2x) be y. So the equation becomes a standard quadratic

2y^2 + y - 1 = 0

Factorize to find the zeroes.

(2y - 1) * (y + 1) = 0

This means that y = 1/2 or y = -1.

Now change back y to cos(2x).

So we get

cos(2x) = 1/2

or

cos(2x) = -1

Next we find the basic angles.

cos^{-1}(1/2) = pi/3

cos^{-1}(-1) = pi

With that, we solve cos(2x) = 1/2 first.

2x = pi/3 + 2kpi or {2pi}/3 + 2kpi,

for any integer k.

x = pi/6 + kpi or pi/3 + kpi

Now, we solve cos(2x) = -1.

2x = pi + 2kpi,

for any integer k.

x = pi/2 + kpi

Combining the solution gives

x = pi/6 + kpi or pi/3 + kpi or pi/2 + kpi,

for any integer k.