How do you solve 2cos^2(2x)+cos(2x)-1=0 ?
1 Answer
Mar 17, 2016
for any integer
Explanation:
Let
2y^2 + y - 1 = 0
Factorize to find the zeroes.
(2y - 1) * (y + 1) = 0
This means that
Now change back
So we get
cos(2x) = 1/2 or
cos(2x) = -1
Next we find the basic angles.
cos^{-1}(1/2) = pi/3
cos^{-1}(-1) = pi
With that, we solve
2x = pi/3 + 2kpi or {2pi}/3 + 2kpi ,
for any integer
x = pi/6 + kpi or pi/3 + kpi
Now, we solve
2x = pi + 2kpi ,
for any integer
x = pi/2 + kpi
Combining the solution gives
x = pi/6 + kpi or pi/3 + kpi or pi/2 + kpi ,
for any integer