How do you solve #2(xsqrt x) + x=8#?
1 Answer
Can reformulate as a cubic equation:
which has an irrational root findable using Cardano's method or similar.
Explanation:
Subtract
Square both sides to get:
Note that squaring can introduce spurious solutions, so we need to check later.
Subtract the right hand side from the left to get:
By the rational roots theorem, the only possible rational roots of this cubic are:
None of these are roots (though
graph{4x^3-x^2+16x-64 [-0.698, 4.302, -1.18, 1.32]}
It is possible to solve
First let
Then:
So
This is of the form
Then you can use Cardano's method to solve, finding a solution of the form:
hence
If you are really interested see: