How do you solve 2 sin x + 1 = 02sinx+1=0?

1 Answer
May 2, 2015

Subtract 1, divide by 2.

sinx = -1/2sinx=12

sinx = pm1/2sinx=±12 at 30^o30o, 150^o150o, 210^o210o, and 330^o330o.
sinx = -1/2sinx=12 at 210^o210o and 330^o330o.

So, you have two answers. Really though, you have infinite answers if you consider that there are equivalent angles at every pm360^o±360o. What you get, then, is:

210^o/180^o*pi = (7pi)/6210o180oπ=7π6

330^o/180^o*pi = (11pi)/6330o180oπ=11π6

Therefore, sinx = -1/2sinx=12 at (7pi)/67π6, (11pi)/611π6, (19pi)/619π6, (23pi)/623π6, etc.

Notice how (11pi)/611π6 = 2pi - pi/62ππ6, and (7pi)/6 = 0 + (7npi)/67π6=0+7nπ6. Recall how sin 0 = sin 2pi = sin 2npisin0=sin2π=sin2nπ, where nin ZZ (n is in the set of integers). Thus, you can write:

x = 2npi-pi/6

x = 2npi+(7pi)/6