How do you solve 2-cos^2(x)=4sin^2(1/2x)2cos2(x)=4sin2(12x) in the interval [0, 2pi]?

1 Answer
Jun 2, 2016

pi/4, (3pi)/4, (5pi)/4 and (7pi)/4π4,3π4,5π4and7π4

Explanation:

Replace in the equation cos^2 xcos2x by ( 1 - sin^2 x)(1sin2x) and put the equation in standard form:
f(x) = 2 - 1 + sin^2 x - 4sin^2 (x/2) = 0f(x)=21+sin2x4sin2(x2)=0
Replace sin^2 xsin2x by (4sin^2 (x/2).cos^2 (x/2))(4sin2(x2).cos2(x2))
f(x) = 1 + 4sin^2 (x/2).cos^2 (x/2) - 4sin^2 (x/2) = 0f(x)=1+4sin2(x2).cos2(x2)4sin2(x2)=0
f(x) = 1 + 4sin^2 (x/2)(cos^2 (x/2) - 1) = 0f(x)=1+4sin2(x2)(cos2(x2)1)=0
Since (cos^2 (x/2) - 1) = - sin^2 (x/2)(cos2(x2)1)=sin2(x2), therefor:
f(x) = 1 - 4sin^4 (x/2) = 0f(x)=14sin4(x2)=0
4sin^4 (x/2) = 14sin4(x2)=1
sin^4 (x/2) = 1/4sin4(x2)=14 -->
sin^2 (x/2) = 1/2sin2(x2)=12 --> sin x = +- 1/sqrt2 = +- sqrt2/2sinx=±12=±22
Trig table and unit circle -->
a. sin x = sqrt2/2sinx=22. There are 2 solution arcs:
x = pi/4x=π4 and x = (3pi)/4x=3π4
b. sin x = -sqrt2/2sinx=22. Two solution arcs:
x = (5pi)/4x=5π4 and x = (7pi)/4x=7π4