How do you solve 2 cos^2(4x)-1=0?

2 Answers
Jul 25, 2016

The Soln. Set={kpi/2+-pi/16} uu {kpi/2+-3pi/16}, k in ZZ.

Explanation:

We recall that the soln. to the eqn. costheta=cosalpha is

theta=2kpi+-alpha, where, k in ZZ

Now, the given eqn. is 2cos^2(4x)-1=0 rArr cos4x=+-1/sqrt2

:. cos4x=1/sqrt2=cospi/4 rArr 4x=2kpi+-pi/4 rArr x=kpi/2+-pi/16, &,

cos4x=-1/sqrt2=cos3pi/4 rArr 4x=2kpi+-3pi/4

rArr x=kpi/2+-3pi/16

Thus, the Soln. Set={kpi/2+-pi/16} uu {kpi/2+-3pi/16}, k in ZZ.

Jul 25, 2016

pi/16 + (kpi)/4
(3pi)/16 + (kpi)/4

Explanation:

Apply the trig identity:
cos 2x = 2cos^2 x - 1
cos 8x = 2cos^2 (4x) - 1 = 0
cos 8x = 0
Trig table and unit circle give 2 solutions:
a. 8x = pi/2 + 2kpi
x = pi/16 + (2kpi)/8 = pi/16 + (kpi)/4
b. 8x = (3pi)/2 + 2kpi
x = (3pi)/16 + (kpi)/4

Check.
x = pi/16 --> 4x = pi/4 --> 2cos^2 pi/4 = 2(1/2) - 1 = 0 .OK
x = (3pi)/16 -> 4x = (3pi)/4 --> 2cos^2 ((3pi)/4) = 2(-sqrt2/2)^2 - 1 = 0 OK