How do you solve 2(6 - x) = x(x + 5) using the quadratic formula?

2 Answers
Jun 6, 2016

x=(-7+-sqrt(97))/2

Explanation:

First let's operate to have the standard form:
12-2x=x^2+5x
x^2+7x-12=0

Using the quadratic formula,

x=(-7+-sqrt(7^2-4*(-12)))/2
x=(-7+-sqrt(49+48))/2
x=(-7+-sqrt(97))/2

Jun 6, 2016

x' = (-7 + sqrt(97))/2

x' = (-7- sqrt(97))/2

Explanation:

2(6-x)=x(x+5)

12-2x=x^2+5x

x^2+5x+2x-12=0

x^2+7x-12=0

Your quadratic equation of the form

ax^2+bx+c=0

The discriminant is determined using the following formula:

color(red)(Delta = b^2- 4ac)

a=1 \ ; \ b= 7 ; \ c=12

Delta = (7)^2 - 4xx1xx(-12)

Delta = 97

Since Delta>0 => two real roots exist

color(red)(x'= (-b + sqrt(Delta))/(2a)) " and " color(red)( x''= (-b - sqrt(Delta))/(2a))

x' = (-17 + sqrt(97))/2 ~=1.42

x''= (-17 - sqrt(97))/2~=-8.42