First, subtract color(red)(6.8) from each side of the equation to put the equation in standard form:
2.3x^2 - 1.4x - color(red)(6.8) = 6.8 - color(red)(6.8)
2.3x^2 - 1.4x - 6.8 = 0
We can now use the quadratic equation to solve this problem:
The quadratic formula states:
For color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0, the values of x which are the solutions to the equation are given by:
x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))
Substituting:
color(red)(2.3) for color(red)(a)
color(blue)(-1.4) for color(blue)(b)
color(green)(-6.8) for color(green)(c) gives:
x = (-color(blue)((-1.4)) +- sqrt(color(blue)((-1.4))^2 - (4 * color(red)(2.3) * color(green)(-6.8))))/(2 * color(red)(2.3))
x = (color(blue)(1.4) +- sqrt(color(blue)(1.96) - (-62.56)))/4.6
x = (color(blue)(1.4) +- sqrt(color(blue)(1.96) + 62.56))/4.6
x = (color(blue)(1.4) +- sqrt(64.52))/4.6
x = (color(blue)(1.4) +- sqrt(4 * 16.13))/4.6
x = (color(blue)(1.4) +- sqrt(4)sqrt(16.13))/4.6
x = (color(blue)(1.4) +- 2sqrt(16.13))/4.6
x = (color(blue)(1.4) - 2sqrt(16.13))/4.6 and x = (color(blue)(1.4) + 2sqrt(16.13))/4.6
x = (color(blue)((2 * 0.7)) - 2sqrt(16.13))/(2 * 2.3) and x = (color(blue)((2 * 0.7)) + 2sqrt(16.13))/(2 * 2.3)
x = (color(blue)(0.7) - sqrt(16.13))/2.3 and x = (color(blue)(0.7) + sqrt(16.13))/2.3