#16cos^2x-8=0 or 16cos^2x=8 or cos^2x=1/2 or cosx= +- 1/sqrt2#
In the interval #(-2pi,2pi)# #cos (pi/4)= 1/sqrt2 ; cos (2pi-pi/4)= 1/sqrt2 ; cos (-pi/4)= 1/sqrt2 ; cos (-2pi+pi/4)= 1/sqrt2 ; :. x=pi/4, (7pi)/4, -pi/4, -(-7pi)/4#. And
#cos (pi -pi/4)= -1/sqrt2 ; cos (pi+pi/4)= -1/sqrt2 ; cos (-pi+pi/4)= -1/sqrt2 ; cos (-pi-pi//4)= -1/sqrt2 ; :. x=(3pi)/4, (5pi)/4, (-3pi)/4, (-5pi)/4#.{Ans]