How do you solve (12n^3+16n^2-3n-4)/(8n^3+12n^2+10n+15)>0?

1 Answer
Mar 2, 2018

The solution is n in (-oo,-3/2)uu(-4/3,-1/2)uu(1/2,+oo)

Explanation:

Start by factorising the numerator and the denominator

12n^3+16n^2-3n-4=12n^3-3n+16n^2-4

=3n(4n^2-1)+4(4n^2-1)

=(4n^2-1)(3n+4)

=(2n+1)(2n-1)(3n+4)

8n^3+12n^2+10n+15=8n^3+10n+12n^2+15

=2n(4n^2+5)+3(4n^2+5)

=(4n^2+5)(2n+3)

Finally,
(12n^3+16n^2-3n-4)/(8n^3+12n^2+10n+15)=((2n+1)(2n-1)(3n+4))/((4n^2+5)(2n+3))

Let f(n)=((2n+1)(2n-1)(3n+4))/((4n^2+5)(2n+3))

The term (4n^2+5)>0

We can construct the sign chart

color(white)(aaaa)ncolor(white)(aaa)-oocolor(white)(aaa)-3/2color(white)(aaa)-4/3color(white)(aaaa)-1/2color(white)(aaaa)1/2color(white)(aaaa)+oo

color(white)(aaaa)2n-3color(white)(aaaa)-color(white)(a)||color(white)(aa)+color(white)(aaaa)+color(white)(aaaa)+color(white)(aaaa)+

color(white)(aaaa)3n+4color(white)(aaaa)-color(white)(a)||color(white)(aa)-color(white)(aaaa)+color(white)(aaaa)+color(white)(aaaa)+

color(white)(aaaa)2n+1color(white)(aaaa)-color(white)(a)||color(white)(aa)-color(white)(aaaa)-color(white)(aaaa)+color(white)(aaaa)+

color(white)(aaaa)2n-1color(white)(aaaa)-color(white)(a)||color(white)(aa)-color(white)(aaaa)-color(white)(aaaa)-color(white)(aaaa)+

color(white)(aaaa)f(n)color(white)(aaaaaa)+color(white)(a)||color(white)(aa)-color(white)(aaaa)+color(white)(aaaa)-color(white)(aaaa)+

Therefore,

f(n)>0 when n in (-oo,-3/2)uu(-4/3,-1/2)uu(1/2,+oo)

graph{(12x^3+16x^2-3x-4)/(8x^3+12x^2+10x+15) [-5.944, 3.92, -2.265, 2.665]}