How do you solve 11x^2-x-3=0 using the quadratic formula?

1 Answer
Aug 10, 2015

The solutions for the equation are:
color(blue)( x =(1+sqrt(133))/22
color(blue)( x =(1-sqrt(133))/22

Explanation:

11x^2−x−3 =0

The equation is of the form color(blue)(ax^2+bx+c=0 where:
a=11, b=-1, c=-3

The Discriminant is given by:
Delta=b^2-4*a*c

= (-1)^2-(4*11*(-3))

=133

The solutions are found using the formula
x=(-b+-sqrtDelta)/(2*a)

x = (-(-1)+-sqrt(133))/(2*11) = (1+-sqrt(133))/22

The solutions are:
color(blue)( x =(1+sqrt(133))/22
color(blue)( x =(1-sqrt(133))/22