How do you solve #10sin(x-2)=-7#?

1 Answer
Sep 15, 2016

#70^@22 and 339^@08# for (0, 360)

Explanation:

First convert 2 radian to degrees
3.14 --> 180^@
1 radian --> 180/(3.14)
2 radian --> #(2(180))/3.14 = 360/3.14 = 114^@65#
The equation becomes:
10sin(x - 114.65) = - 7
sin (x - 114.65) = -7/10 = - 0.7
Calculator and unit circle -->
Arc #(x - 114.65) = - 44^@43#
arc (- 44.43) is co-terminal to arc #(360 - 44.43 = 315^@57)#
and arc #x - 114.65 = 180 + 44.43 = 224^@43#
a. x - 114.65 = 224.43 --> #x = 339^@08#
b. x - 114.65 = 315.57 --> #x = 430^@32#, or #70^@22#
Answer for (0, 360):
#70^@22; 339^@08#