How do you solve (1+sinx)/cosx+cosx/(1+sinx)=4 in the interval 0<=x<=2pi?

1 Answer
Oct 4, 2016

In the interval 0<=x<=2pi,

x=pi/3 or x=(5pi)/3

Explanation:

(1+sinx)/cosx+cosx/(1+sinx)

= (1+sinx)/cosx+(cosx(1-sinx))/((1+sinx)(1-sinx))

= (1+sinx)/cosx+(cosx-sinxcosx)/(1-sin^2x)

= (1+sinx)/cosx+(cosx-sinxcosx)/cos^2x

= (cosx+sinxcosx+cosx-sinxcosx)/cos^2x

= (2cosx)/cos^2x=2/cosx=2secx

Hence, (1+sinx)/cosx+cosx/(1+sinx)=4

hArr2secx=4 or secx=2

As sec(+-pi/3)=2

and in the interval 0<=x<=2pi, x=pi/3 or x=2pi-pi/3=(5pi)/3