Since, cos^ x + sin^2 x = 1
we have: cos^2 x = 1 - sin^2 x
So we can replace cos^2 x in the equation 1 + sinx = 2cos^2x by (1- sin^2 x)
=>2 (1 - sin^2 x) = sin x +1
or, 2 - 2 sin^2 x = sin x + 1
or, 0=2sin ^2 x + sin x + 1 - 2
or, 2sin ^2 x + sin x - 1 = 0
using the quadratic formula:
x = (-b+-sqrt(b^2 - 4ac))/(2a) for quadratic equation ax^2+bx+c=0
we have:
sin x = (-1+-sqrt(1^2 - 4*2*(-1)))/(2*2)
or, sin x = (-1+-sqrt(1 + 8))/4
or, sin x = (-1+-sqrt(9))/4
or, sin x = (-1+-3)/4
or, sin x = (-1+3)/4, (-1-3)/4
or, sin x = 1/2, -1
Case I:
sin x = 1/2
for the condition: 0<=x<=2pi
we have:
x= pi/6 or (5pi)/6 to get positive value of sinx
Case II:
sin x = -1
we have:
x= (3pi)/2 to get negative value of sinx