How do you solve 1+sinx=2cos^2x?

2 Answers

x = 30^o +(-1)^n(180^o xxn) or x =-90^o +(360^o xxn)

where n can be any positive or negative integer, including 0.

Explanation:

Given: 1 + sin(x) = 2cos^2(x)

Substitute 1 - sin^2(x) for cos^2(x):

1 + sin(x) = 2(1 - sin^2(x))

Distribute the 2:

1 + sin(x) = 2 - 2sin^2(x)

Add 2sin^2(x) - 2 to both sides:

2sin^2(x) + sin(x) - 1 = 0

Divide by 2:

sin^2(x) + 1/2sin(x) - 1/2 = 0

Use the quadratic formula:

sin(x) = (-1/2 +-sqrt((1/2)^2 - 4(1)(-1/2)))/(2(1))

sin(x) = (-1/2 +-sqrt(1/4 + 2))/(2)

sin(x) = (-1/2 +-sqrt(9/4))/(2)

sin(x) = (-1/2 +-3/2)/(2)

sin(x) = (-1 + 3)/4 and sin(x)=(-1 - 3)/4

x = sin^-1(1/2) and sin^-1(-1)

I am going to use degrees, because the numbers are much nicer than the radian values.

x = 30^o or 150^o and x=-90^o

This will repeat an integer multiples of 360^o

x = 30^o +(-1)^n(180^o xxn) or x =-90^o +(360^o xxn)

where n can be any positive or negative integer, including 0.

Nov 25, 2016

pi/2 + 2kpi
(7pi)/6 + 2kpi
(11pi)/6 + 2kpi

Explanation:

1 + sin x = 2cos^2 x
Replace (2cos^2 x) by (2( 1 - sin^2 x)):
1 + sin x = 2( 1 - sin^2 x) = 2 - 2sin^2 x
Bring quadratic equation to standard form, and solve it
2sin^2 x - sin x - 1 = 0
Since a + b + c = 0, use shortcut. The 2 real roots are:
sin x = 1 and sin x = c/a = - 1/2
a. sin x = 1 --> arc x = pi/2
b. sin x = - 1/2
Trig unit circle gives 2 solutions
sin x = -1/2 --> arc x = - pi/6 and arc x = - (5pi)/6
Solution for (0, 2pi)
pi/2, (7pi)/6, (11pi)/6
The arc (7pi)/6 and (11pi)/6 are co-terminal to the arcs (- 5pi)/6 and (-pi/6).
For general answers, add 2kpi for each solution