Apply the identities cottheta = costheta/sintheta and csctheta = 1/sintheta:
cos^2theta/sin^2theta + 1/sintheta = 1
cos^2theta/sin^2theta + sintheta/sin^2theta = 1
(cos^2theta + sin theta)/sin^2theta = 1
cos^2theta + sin theta = sin^2theta
Apply the identity sin^2theta + cos^2theta = 1 ->cos^2theta = 1 - sin^2theta
1 - sin^2theta + sin theta - sin^2theta = 0
-2sin^2theta + sin theta + 1 = 0
-2sin^2theta + 2sintheta - sin theta + 1 = 0
-2sintheta(sin theta - 1) - 1(sin theta - 1) = 0
(-2sintheta - 1)(sin theta - 1) = 0
sintheta = -1/2 and sin theta = 1
theta = (7pi)/6, (11pi)/6 and pi/2
However, since pi/2 renders the equation undefined, that solution is extraneous. Hence, our solution set is {(7pi)/6, (11pi)/6}.
Hopefully this helps!