How do you solve (1+cosx)/sinx + sinx/(1+cosx) = 4?

1 Answer
Apr 16, 2015

First of all: the existence conditions.

sinx!=0rArrx!=kpi

and

1+cosx!=0rArrcosx!=-1rArrx!=pi+2kpi

So, together: x!=kpi.

Now:

((1+cosx)^2+sin^2x)/(sinx(1+cosx))=4*(sinx(1+cosx))/(sinx(1+cosx))rArr

1+2cosx+cos^2x+sin^2x=4sinx+4sinxcosxrArr

2+2cosx-4sinx-4sinxcosx=0rArr

2(1+cosx)-4sinx(1+cosx)=0rArr

2(1+cosx)(1-2sinx)=0.

So:

1+cosx=0rArrcosx=-1rArrx=pi+2kpi not acceptable,

and:

1-2sinx=0rArrsinx=1/2rArr

x=pi/6+2kpi acceptable

x=5/6pi+2kpi acceptable.