How do you solve 1/2(x+8)^2=1412(x+8)2=14?

2 Answers
Jan 28, 2017

x = 2sqrt(7) - 8x=278

Explanation:

1/"2"(x + 8)^2 = 1412(x+8)2=14

Multiplying by 2 on both sides

cancel(2) × 1/cancel("2")(x + 8)^2 = 2 × 14

(x + 8)^2 = 28

Square root both side

sqrt((x + 8)^2 = sqrt(28)

x + 8 = +-2sqrt(7)

x = 2sqrt(7) - 8 and x =- 2sqrt(7) - 8

x=-8+-2sqrt7

Explanation:

1/2 (x+8)^2=14

I want to expand the squared term, so to do that I'll first multiply both sides by 2:

1/2 color(red)(xx2) (x+8)^2=14color(red)(xx2)

(x+8)^2=28

x^2+16x+64=28

x^2+16x+64color(red)(-28)=28color(red)(-28)

x^2+16x+36=0

I don't see any easy factors, so let's use the quadratic formula. The general formula is:

x=(-color(green)b+-sqrt(color(green)b^2-4color(blue)acolor(brown)c))/(2color(blue)a)

and relates to a trinomial this way:

color(blue)ax^2+color(green)bx+color(brown)c

x=(-16+-sqrt(16^2-4(1)(36)))/(2(1))

x=(-16+-sqrt(256-144))/2

x=(-16+-sqrt(112))/2=(-16+-sqrt(16xx7))/2=(-16+-4sqrt(7))/2=-8+-2sqrt7

And we can see these two solutions in the graphing of both sides of the original equation:

graph{(y-(1/2)(x+8)^2)(y-0x-14)=0 [-16.69, 3.31, 9.14, 19.136]}